欢迎来到阅能服务平台官网!

本网站目前处于试运行阶段,期间可能出现不稳定现象,敬请谅解,如有意见建议,请反馈至289291120@qq.com

  • 浏览量( 81 )
  • 加入收藏( 0 )

太阳能电池
  • 作者:周文利 胡松
  • 出版社:中国水利水电出版社
  • 出版日期:2015年05月
  • ISBN:978-7-5170-3285-4
  • 页数:406
优惠价: ¥ 40.20
定价: ¥ 67.00

标签:新能源

图书详情
内容简介
目录
  • 编委会
  • 前言
  • Preface
  • 1 太阳能电池表面光栅吸收辐射特性研究
  • 1.1 研究背景和意义
  • 1.2 国内外研究现状
  • 1.2.1 表面微结构在能量转换系统中的应用
  • 1.2.2 周期性表面微结构在太阳能电池中的应用
  • 1.3 主要内容
  • 2.1 表面微结构辐射特性的数值计算方法
  • 2.1.1 Maxwell方程
  • 2.1.2 严格耦合波分析法
  • 2.1.3 时域有限差分法
  • 2.1.4 数值计算方法验证
  • 2.2 微结构中的异常辐射现象
  • 2.2.1 表面等离子体激元
  • 2.2.2 伍德异常
  • 2.2.3 空腔谐振效应
  • 2.3 本章小结
  • 3.1 一维简单光栅辐射特性研究
  • 3.1.1 一维简单光栅结构和材料
  • 3.1.2 不同参数对一维简单光栅辐射特性的影响
  • 3.2 一维复杂凹形光栅辐射特性研究
  • 3.2.1 一维复杂凹形光栅结构
  • 3.2.2 一维简单光栅和一维复杂凹形光栅辐射特性的比较
  • 3.2.3 一维复杂凹形光栅结构优化
  • 3.2.4 一维复杂凹形光栅Ⅱ对入射角的依赖特性
  • 3.3 本章小结
  • 4.1 二维凸形光栅辐射特性研究
  • 4.1.1 结构和材料
  • 4.1.2 吸收特性比较
  • 4.1.3 结构优化
  • 4.1.4 对入射角度依赖特性
  • 4.2 二维凹形光栅辐射特性研究
  • 4.2.1 二维简单凹形光栅辐射特性研究
  • 4.2.2 二维复杂凹形光栅辐射特性研究
  • 4.3 本章小结
  • 5.1 总结
  • 5.2 展望
  • 2 两端开口TiO纳米管阵列制备及其在量子点敏化太阳能电池中的应用
  • 1.1 引言
  • 1.2 太阳能电池
  • 1.2.1 单晶硅太阳能电池
  • 1.2.2 多晶硅太阳能电池
  • 1.2.3 薄膜太阳能电池
  • 1.2.4 量子点敏化太阳能电池
  • 1.3 纳米半导体材料
  • 1.3.1 纳米半导体材料的特殊性质
  • 1.3.2 光催化特性
  • 1.3.3 光电转换特性
  • 1.4 纳米TiO2半导体材料
  • 1.4.1 晶体结构
  • 1.4.2 物理化学性质
  • 1.5 TiO2纳米管的概述
  • 1.5.1 阳极氧化法(ATO)的概述
  • 1.5.2 阳极氧化制备的TiO2纳米管的应用现状
  • 1.6 研究目的和主要内容
  • 2.1 实验试剂和仪器
  • 2.2 实验部分
  • 2.3 样品表征
  • 2.4 结果与讨论
  • 2.4.1 TiO2纳米管的形貌
  • 2.4.2 XRD分析
  • 2.4.3 透射电镜(TEM)分析
  • 2.5 本章小结
  • 3.1 实验试剂和仪器
  • 3.2 实验部分
  • 3.3 样品表征
  • 3.4 结果与讨论
  • 3.4.1 两端开口的TiO2纳米管阵列薄膜的形貌
  • 3.4.2 XRD分析
  • 3.5 本章小结
  • 4.1 实验试剂和仪器
  • 4.2 实验部分
  • 4.2.1 TiO2纳米管阵列薄膜的制备
  • 4.2.2 连续离子层吸附反应法制备CdS量子点敏化TiO2纳米管阵列薄膜
  • 4.2.3 量子点敏化TiO2纳米管阵列薄膜太阳能电池的制备
  • 4.3 样品表征
  • 4.4 结果与讨论
  • 4.4.1 XRD分析
  • 4.4.2 CdS量子点敏化TiO2纳米管阵列薄膜的形貌性能
  • 4.4.3 TEM分析
  • 4.4.4 紫外可见漫反射(UV-Vis)吸收光谱分析
  • 4.4.5 电池的光伏性能测试结果
  • 4.5 本章小结
  • 5.1 总结
  • 5.2 展望
  • 3 AZO薄膜性能研究及其在薄膜电池上的应用
  • 1.1 ZnO的结构与性质
  • 1.1.1 ZnO的晶体结构
  • 1.1.2 ZnO的能带结构
  • 1.1.3 ZnO的电学性质
  • 1.1.4 ZnO的光学性质
  • 1.2 ZnO的缺陷与掺杂
  • 1.3 AZO薄膜的应用以及研究现状
  • 1.4 研究意义及内容
  • 2.1 射频磁控溅射
  • 2.1.1 磁控溅射的原理
  • 2.1.2 磁控溅射的特点
  • 2.2 薄膜样品的表征
  • 2.2.1 厚度的测量
  • 2.2.2 X射线衍射(XRD)方法
  • 2.2.3 扫描电子显微镜(SEM)和原子力显微镜(AFM)
  • 2.2.4 霍尔测量系统
  • 2.2.5 紫外一可见(UV-VIS)分光光度计
  • 3.1 AZO薄膜的制备
  • 3.1.1 实验设备
  • 3.1.2 实验材料
  • 3.1.3 衬底预处理
  • 3.1.4 AZO薄膜样品的制备过程
  • 3.2 AZO薄膜的性能研究
  • 3.2.1 衬底温度对AZO薄膜性能的影响
  • 3.2.2 溅射功率对AZO薄膜的影响
  • 3.2.3 绒面结构AZO薄膜的制备
  • 3.3 本章小结
  • 4.1 理论和计算
  • 4.2 Ar流量对AZO薄膜禁带宽度的影响
  • 4.3 溅射功率对AZO薄膜禁带宽度的影响
  • 4.4 衬底温度对AZO薄膜禁带宽度的影响
  • 4.5 本章小结
  • 5.1 绒面结构AZO对薄膜电池性能影响
  • 5.2 不同光学性能AZO薄膜对电池性能影响
  • 5.2.1 不同衬底温度下制备的AZO薄膜对电池性能影响
  • 5.2.2 不同功率下制备的AZO薄膜对电池性能影响
  • 5.3 本章小结
  • 6.1 总结
  • 6.2 展望
  • 4 Research on One-dimensional and Two-dimensional Gratings as Absorbers for Solar Cells
  • 1.1 Background and Significance of the Research
  • 1.2 Literature Review
  • 1.3 Thesis Main Contents
  • 2.1 Numerical Methods
  • 2.1.1 The rigorous coupled-wave analysis(RCWA)method
  • 2.1.2 The finite-difference time-domain(FDTD)method
  • 2.1.3 Numerical method validation
  • 2.2 Theoretical Basis
  • 2.2.1 Wood's anomaly
  • 2.2.2 Surface plasmon polaritons
  • 2.2.3 Cavity resonance
  • 3.1 Structure Profile and the Material Employed
  • 3.2 Parametric Study for the 1 D Simple Silicon Grating
  • 3.2.1 Effect of filling ratio on spectral absorptance
  • 3.2.2 Effect of incident angle on spectral absorptance
  • 3.2.3 Effect of groove depths on spectral absorptance
  • 3.3 1D Complex Grating Performance Demonstration
  • 3.3.1 Comparison of spectral absorptance between 1 D simple gratings and 1 D complex gratings
  • 3.3.2 Complex silicon grating profile determination
  • 3.3.3 Angular independence
  • 4.1 Structure Profile
  • 4.2 Performance Comparison of 2D Gratings and 1D Gratings
  • 4.2.1 Comparisons of spectral absorptance between 2D complex gratings and 1D complex gratings as well as 2D simple gratings
  • 4.2.2 Comparisons of average absorptance between 2D complex gratings and 1D complex gratings as well as 2D simple gratings
  • 4.3 Profile Optimization and Performance Evaluation
  • 4.3.1 Profile optimization for 2D complex convex gratings
  • 4.3.2 Angular independence
  • 5.1 Summary
  • 5.2 Prospect
  • 5 Fabrication of Two-End-opened TiO Nanotube Array Membranes and Their Application in Quantum Dots Sensitizedd Solar Cells
  • 1.1 Motivation
  • 1.2 Solar Cells
  • 1.2.1 Monocrystalline silicon solar cells
  • 1.2.2 Polycrystalline silicon solar cells
  • 1.2.3 Thin film solar cells
  • 1.2.4 Quantum dots sensitized solar cells
  • 1.3 Nano-semiconductor Materials
  • 1.3.1 Characteristics of nano-semiconductor materials
  • 1.3.2 Optical properties
  • 1.3.3 Photocatalytic properties
  • 1.3.4 Photovoltaic properties
  • 1.4 TiO2 Nano-semiconductor Materials
  • 1.4.1 Crystal structures
  • 1.4.2 Physical and chemical properties
  • 1.5 Research Progress of Oriented TiO2 Nanotubes Array Membranes
  • 1.5.1 Anodic titanium oxide method
  • 1.5.2 The applications of TiO2 nanotube array membranes
  • 1.6 The Main Contents of the Thesis
  • 2.1 Materials and Instruments
  • 2.2 Characterization
  • 2.3 Experimental Section
  • 2.3.1 The anodic oxide process
  • 2.3.2 The detachment of the TiO2 nanotubes arrays membranes
  • 2.4 Results and Discussion
  • 2.4.1 The morphology of the TiO2 nanotube array membranes
  • 2.4.2 XRD result
  • 2.4.3 TEM result
  • 2.5 Chapter Conclusions
  • 3.1 Materials and Instruments
  • 3.2 Characterization
  • 3.3 Experimental Section
  • 3.3.1 The anodic oxide process
  • 3.3.2 The annealing of TiO2 nanotubes arrays membranes
  • 3.4 Results and Discussion
  • 3.4.1 The morphology of the two-end-opened TiO2 nanotubes arrays membranes
  • 3.4.2 XRD result
  • 3.5 Chapter Conclusions
  • 4.1 Materials and Instruments
  • 4.2 Characterization and Measurements
  • 4.3 Experiment Section
  • 4.3.1 Preparation of TiO2 nanotubes arrays membranes
  • 4.3.2 Deposition of CdS QDs into the TiO2 nanotubes arrays membrane
  • 4.3.3 Fabrication of QDSSCs
  • 4.4 Results and Discussion
  • 4.4.1 The morphology of the CdS/TiO2 nanotubes arrays membrane
  • 4.4.2 XRD result
  • 4.4.3 TEM result
  • 4.4.4 Optical absorption property
  • 4.4.5 Photovoltaic property
  • 4.5 Chapter Conclusions
  • 5.1 Summary
  • 5.2 Prospect
  • 6 Fabrication and Photovoltaic Performance of the Sensitized Solar Cells Based on TiO Nanorods
  • 1.1 Solar Cells
  • 1.2 Structure and Working Principle of Dye-sensitized Solar Cells
  • 1.3 Research Progress of the Photo-anode Materials
  • 1.3.1 Semiconductor materials for photo-anodes
  • 1.3.2 The research of TiO2 used as photo-anodes
  • 1.4 Research Progress of the Sensitizer
  • 1.4.1 Dye sensitizer
  • 1.4.2 Quantum dots sensitizers
  • 1.5 Research Progress of the Electrolyte
  • 1.5.1 Liquid electrolyte
  • 1.5.2 Solid-state and quasi solid-state electrolyte
  • 1.6 Research Progress of the Counter Electrode
  • 1.7 Content and Significance of the Research
  • 2.1 Main Chemical Reagents and Equipments
  • 2.2 Experimental Section
  • 2.3 Results and Discussion
  • 2.3.1 The morphology of pure and Ca-doped TiO2 NRs arrays
  • 2.3.2 The crystal structure of pure and Ca-doped TiO2 NRs arrays
  • 2.4 Chapter Conclusions
  • 3.1 Main Chemical Reagents and Equipments
  • 3.2 Experimental Section
  • 3.3 Results and Discussion
  • 3.3.1 The optical properties of Ca-doped TiO2 films
  • 3.3.2 The photovoltaic performance of DSSCs
  • 3.3.3 IPCE analysis
  • 3.3.4 EIS analysis
  • 3.4 Chapter Conclusion
  • 4.1 Introduction of ECALE
  • 4.2 Introduction of the ECALE Equipment
  • 4.3 Main Chemical Reagent and Equipment
  • 4.4 Experimental Section
  • 4.4.1 Fabrication of Ag2S QDs
  • 4.4.2 Assembly of Ag2S quantum dots sensitized solar cells
  • 4.5 Results and Discussion
  • 4.6 Chapter Conclusion
  • 7 The Research on Bidirectional Reflectance Distributional Function of Rough Surface
  • 1.1 Identification and Significance of the Problem
  • 1.2 Literature Review
  • 1.2.1 BRDF theoretical research
  • 1.2.2 BRDF experimental measurement
  • 1.3 Organization of the Thesis
  • 2.1 BRDF Definition
  • 2.2 Relationship between BRDF and Several Physical Quantities
  • 2.3 Measuring Method of BRDF
  • 2.3.1 Relative measurement
  • 2.3.2 Absolute measurement
  • 2.3.3 The necessary conditions in actual BRDF measurement
  • 2.4 Statistical Description of Random Rough Surface
  • 2.4.1 Height distribution function(HDF)[19]
  • 2.4.2 Slope distribution function(SDF)
  • 3.1 Introduction
  • 3.2 Description of Silicon Wafer Samples
  • 3.3 The Radiation Characteristics of Two-dimensional Silicon Rough Surface
  • 3.3.1 BRDF of silicon wafer at normal temperature
  • 3.3.2 BRDF of silicon wafer at high temperatures
  • 4.1 Introduction of NIMS-Ⅲ BRDF Measurement Device
  • 4.1.1 Main technical index of NIMS-Ⅲ
  • 4.1.2 Main Functions of NIMS-Ⅲ
  • 4.2 BRDF Experimental Results
  • 5.1 Summary
  • 5.2 Prospect
  • Al.1 Simulation Method Introduction
  • Al.1.1 The finite difference time domain(FDTD)method
  • Al.1.2 FDTD method in two dimensions
  • Al.1.3 FDTD method in three dimensions
  • Al.2 Theoretical Derivation of BRDF by FDTD Method
  • 8 Material and Growth Mechanism Studies of Microcrystalline Silicon from SiF/H/Ar Gas Mixture and Application of Tailored Voltage Waveform Technique
  • 1.1 Renewable Energy Outlook
  • 1.2 Solar Energy and Photovoltaic(PV)Technology
  • 1.3 Semiconductor Principles of PV
  • 1.3.1 Under dark condition
  • 1.3.2 Under illumination
  • 1.3.3 Carriers transportation
  • 1.3.4 PN junction
  • 1.3.5 J-V characteristic
  • 2.1 Introduction of Microcrystalline Silicon Materials
  • 2.1.1 Definition of microcrystalline silicon
  • 2.1.2 Merits of microcrystalline silicon
  • 2.2 Optical Properties
  • 2.3 Electrical Properties
  • 2.4 Basic of Plasma Enhanced Chemical Vapor Deposition(PECVD)
  • 2.5 Surface Growth Models
  • 2.5.1 Surface diffusion model
  • 2.5.2 Etching model
  • 2.5.3 Chemical annealing model
  • 2.6 Characterization
  • 2.6.1 Ellipsometry
  • 2.6.2 Raman spectroscopy
  • 2.6.3 X-ray diffraction(XRD)
  • 2.6.4 Atomic force microscopy(AFM)
  • 2.6.5 Secondary Ion Mass Spectrometry(SIMS)
  • 3.1 Motivations of the Plasma Study
  • 3.2 Role of Hydrogen
  • 3.3 Role of Argon
  • 3.4 Influence of Gas Density
  • 3.5 Influence of Gas Temperature
  • 3.6 Influence of Inter-electrode Distance
  • 4.1 Electrical Asymmetry Effect
  • 4.1.1 Tailored voltage waveform
  • 4.1.2 Decoupling of ion flux and ion energy
  • 4.2 Effect of Tailored Voltage Waveform on μc-Si:H Film Growth
  • 4.2.1 Detection of growth regime transition
  • 4.2.2 Effect of plasma potential on µc-Si:H surface morphology
  • 4.2.3 Effect of plasma potential on growth regime transition
  • 4.2.4 Time resolved surface morphology of μc-Si:H films
  • 4.3 μc-Si:H Solar Cells Using TVW Technique

编辑推荐